
ar
X

iv
:h

ep
-t

h/
04

11
00

1 
v1

   
1 

N
ov

 2
00

4

hep-th/0411001
PUPT-2141

HUTP-04/A040

Thermodynamics of R-charged Black Holes

in AdS5 From Effective Strings

Steven S. Gubser1,∗ and Jonathan J. Heckman2,†

1Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

2Jefferson Laboratories, Harvard University, Cambridge, MA 02138

Abstract
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1 Introduction

Little exact information is available for black holes in AdSp with p > 3. For example,

there is a 3/4 mismatch between the free energy of an uncharged black hole in

AdS5 and the free-field calculation of free energy in the dual gauge theory [1]. This

mismatch is thought to be due to the strong interactions that are present in the

gauge theory in the regime where supergravity calculations are reliable. Calculations

both in supergravity [2] and field theory [3] support the view that f(g2
Y MNc) ≡

−F/N2
c V T 4 smoothly interpolates between its free field value at g2

Y MN = 0 and 3/4

this value at g2
Y MN = ∞.

Novel results on the AdS/CFT correspondence [4, 5, 6] have been obtained by

studying states with some large quantum number, like R-charge [7] or angular mo-

mentum [8]. Many of these results have yielded new exact comparisons between

string theory and a dual gauge theory. In light of all this progress, it is tempting to

reconsider black holes in AdS5 with one, two, or three large charges. On the super-

gravity side, these black holes are solutions of d = 5, N = 8 gauged supergravity.

The three charges correspond to the U(1)3 Cartan subalgebra of the gauge group

SO(6). In AdS5 × S5, these backgrounds can be described as black holes with three

independent angular momenta in the S5 directions. In asymptotically flat space, a

limit of these solutions describes D3-branes with angular momenta in the three in-

dependent planes orthogonal to the brane world-volumes. In the dual gauge theory,

these charged black holes correspond to a thermal bath, uniform on the S3 spatial

slice of the boundary of AdS5, and carrying three R-charges: the R-symmetry group,

of course, is the same SO(6) that describes rotations on S5.

These R-charged black holes have been studied extensively: see for example

[9, 10, 11, 12, 13]. They have some similarities to the three-charge black holes in

asymptotically flat space which figured so prominently in the string theory counting

of black hole microstates [14, 15, 16]. The purpose of this paper is to examine the

extent to which similar methods, based on intersecting D-branes, can be used to

account for the semiclassical thermodynamics of the R-charged black holes in AdS5.

Our main result is that, under certain plausible assumptions, in the regime where

at least one charge is small compared to the others, intersecting giant gravitons do

indeed give a microstate counting that agrees with the semiclassical results. It is

interesting to note that for the three-charge case, even at zero temperature, a hori-

zon breaks supersymmetry: this is in contrast to the asymptotically flat space case,
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where BPS configurations exist with a macroscopic horizon.

The organization of the rest of the paper is as follows. In section 2 we describe

the R-charged black holes as the classical backgrounds in d = 5, N = 8 supergravity.

After establishing the relative sizes of the CFT charges to Nc in section 4, in section 5

we show that the semiclassical thermodynamics of the black holes is reproduced

(with the aforementioned caveats) by effective strings created by the intersection of

distributions of giant gravitons. In section 6 we exhibit a free fermion description

of the supersymmetric limit of the one-charge black hole. We conclude in section 7

with some further observations about these black holes and their field theory duals.

The results in this paper are based in part on the senior thesis of JJH [17].

2 R-charged black holes in AdS5

In d = 5, N = 8 gauged type IIB supergravity, the metric for an R-charged black

hole in AdS5 is given by [9]:

ds2 = gµνdxµdxν = −H−2/3fdt2 + H1/3
(

f−1dr2 + r2dΩ2
3,k

)

(1)

where dΩ2
3,k is the metric on an S3, and

Hi = 1 +
qi

r2
(2)

H =

3
∏

i=1

(

1 +
qi

r2

)

(3)

f = k − µ

r2
+

r2

L2
H . (4)

Here L is the radius of AdS5, and k controls the size of the S3. The value k = 1

corresponds to an S3 of radius 1, and the value k = 0 corresponds to the conformal

completion of R3. In all that follows, we assume k = 1. The charges qi are related

to the three independent angular momenta in AdS5 × S5. The parameter µ ≥ 0

describes departures from extremality: at µ = 0 supersymmetry is restored. The

mass of the black hole is given by the formula:

M =
π

4G5

(

3

2
µ + q1 + q2 + q3

)

(5)

2



where G5 is the five dimensional Newton constant. The qi are not conserved charges,

but they are simply related to conserved charges q̃i:

q̃i =
√

qi(µ + qi) . (6)

The scalar potentials for the three U(1) gauge fields are

Ai
t =

q̃i

r2 + qi

, (7)

and there are also three real scalar fields (parametrizing directions in the E7,7/USp(8)

coset that describes the 78 scalar fields in d = 5, N = 8 gauged supergravity) [9]

X i = H−1
i

(

3
∏

i=1

Hi

)1/3

. (8)

In general, we will work close enough to extremality (µ = 0) that the difference

between qi and q̃i is negligible. Note however that for at least two qi non-zero, one

cannot take µ arbitrarily small without losing the horizon altogether: the radial

location of the outer horizon r+ is the largest double zero of gtt, which leads to

f (r+) = 1 − µ

r2
+

+
r2
+

L2

(

1 +
q1

r2
+

)(

1 +
q2

r2
+

)(

1 +
q3

r2
+

)

= 0. (9)

Let us refer to the smallest value of µ that leads to a horizon as µcrit. For all µ > µcrit,

there is a regular horizon with finite temperature. For all µ < µcrit, there is a naked

singularity at r = 0. For µ = 0 (the supersymmetric case) the configurations (1)

have been referred to as “superstars.”

For µ = µcrit, f(r) has a double zero at r = r+: thus f(r+) = f ′(r+) = 0. These

two conditions can be expressed more simply as

L2 + q1 + q2 + q3 −
q1q2q3

r4
+

+ 2r2
+ = 0

µcritL
2 = −r4

+ + q1q2 + q1q3 + q2q3 +
2q1q2q3

r2
+

.

(10)

The first of these may be solved explicitly to give r+/L in terms of qi/L
2, and then
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the second may be used to express µ/L2 in terms of qi/L
2. The resulting expressions

are not simple, so we will not record them here. Let us however quote some special

limits.

• q2 = q3 = 0. In this case, when µ = 0, there is a naked singularity in the

five-dimensional solution at r = 0, and for µ > 0, there is a horizon at

r2
+(1) =

µL2

L2 + q1

+ O(µ2) . (11)

When the black hole is arbitrarily close to criticality, the outer horizon has

vanishingly small size.

• q3 = 0. When µ < µcrit = q1q2/L
2 there is a naked singularity at r = 0. For

µ ≥ µcrit, there is a horizon at

r2
+(2) =

L2 + q1 + q2

2

(

−1 +

√

1 + 4L2
µ − µcrit

(L2 + q1 + q2)2

)

= L4 µ − µcrit

L2 + q1 + q2
+ O[(µ − µcrit)

2] ,

(12)

which is vanishingly small as the black hole approaches criticality.

• 0 < qi ≪ L2. There is a naked singularity at r = 0 when

µ < µc = 2

√
q1q2q3

L
+

q1q2 + q1q3 + q2q3

L2
+ O(q

5/2
i ) . (13)

For µ > µcrit, there is a regular horizon at

r2
+(3) =

√
q1q2q3

L
+

(q1q2q3)
3/4√µ − µc√

L
. (14)

In contrast to the previous cases, as the black hole approaches criticality, it

maintains a finite sized outer horizon.

The semiclassical entropy and temperature of the black holes under consideration
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is

S =
A

4G5
=

2π2

4G5

√

√

√

√

3
∏

i=1

(r2
+ + qi)

β =
1

T
= L2

2πr2
+

√

∏3
i=1(r

2
+ + qi)

2r6
+ + r4

+ (L2 +
∑

qi) −
∏3

i=3 qi

.

(15)

We now apply the above formulas to the cases discussed above:

• q2 = q3 = 0. In this case,

S(1) =
2π2

4G5
r2
+(1)

√
q1 ≈

2π2

4G5
µ

√
q1

1 + q1/L2

β(1) ≈ 2π

√
q1

1 + q1/L2
,

(16)

where the approximate equalities are accurate to leading order in small µ.

• q3 = 0. Assuming also that q2 and q3 are much less than L2, one obtains

S(2) ≈
2π2

4G5

r+(2)
√

q1q2 ≈
2π2

4G5

√

(µ − µcrit)
√

q1q2

β(2) ≈
2π

√
q1q2

r+(2)

≈ 2π
√

q1q2
√

(µ − µcrit)
,

(17)

where in each line the second approximate equality comes from expanding to

non-trivial leading order in small µ − µcrit.

• All charges non-zero, and much less than L2. In this case, the entropy is given

by:

S(3) ≈
2π2

4G5

√
q1q2q3 (18)

At criticality, the temperature vanishes. As µ approaches µcrit, β becomes:

β(3) ≈
π

L

√

q1q2q3

µ − µcrit
. (19)
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3 CFT dictionary entries

We now recast the parameters of the above black holes in terms of dual CFT dictio-

nary entries. After also establishing the dictionary entries for the parameters µ and

µcrit we state dual CFT formulas for the entropy and temperature.

Although small in comparison to AdS5, black holes which can be probed by

supergravity are still macroscopic objects and as such the CFT operators which

describe the black hole will have large scaling dimension ∆ = ML. Using the black

hole mass formula of equation 5 thus yields:

∆ =
πL

4G5

(

3

2
µ + q1 + q2 + q3

)

. (20)

In the limit µ = q2 = q3 = 0 the CFT dual of the singularity becomes a BPS object

with scaling dimension:

∆BPS(1) =
πL

4G5

q1. (21)

BPS operators in the dual CFT with corresponding U(1) ⊂ SU(4)R charge J1 must

satisfy the single charge BPS bound:

∆BPS(1) − J1 = 0. (22)

Equation 21 then implies:

J1 =
πL

4G5
q1. (23)

Using the AdS/CFT dictionary entry 2G5N
2
c = πL3 we find

J1

N2
c

=
q1

2L2
. (24)

Extrapolating to the other R-charges thus yields

Ji

N2
c

=
qi

2L2
(25)

for i = 1, 2, 3. These relations fully determine the corresponding dictionary entry for
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µ. Equations 20 and 25 imply

∆ − (J1 + J2 + J3) =
πL

4G5

3

2
µ (26)

or,
4

3

(∆ − (J1 + J2 + J3))

N2
c

=
µ

L2
. (27)

The critical operator dimension ∆crit necessary to form a horizon is thus related to

µcrit by:
4

3

(∆crit − (J1 + J2 + J3))

N2
c

=
µcrit

L2
(28)

so that
4

3

(∆ − ∆crit)

N2
c

=
µ − µcrit

L2
(29)

where

µcrit

L2
= 2

(

(2J1) (2J2) (2J3)

N6
c

)1/2

+
(2J1) (2J2) + (2J1) (2J3) + (2J2) (2J3)

N4
c

+O

(

J
5/2
i

N5
c

)

.

(30)

Solving equation 28 for ∆crit yields

∆crit = Υ + ∆BPS (31)

where by abuse of notation, we have defined ∆BPS ≡ J1 + J2 + J3 and:

Υ =
3

4

(

2

√

(2J1) (2J2) (2J3)

Nc
+

(2J1) (2J2) + (2J1) (2J3) + (2J2) (2J3)

N2
c

+ O

(

J
5/2
i

N3
c

))

.

(32)

With the dictionary entries for the qi’s and µ established, we now recast all

thermodynamic predictions for the temperature and entropy from supergravity in

terms of purely CFT quantities. Making the trivial substitutions, we have for the
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single, double and triple charge cases:

S(1) =
π

Nc

4

3
(∆ − ∆crit)

√
2J1

1 + 2J1/N2
c

(33)

β(1) =
2πL

Nc

√
2J1

1 + 2J1/N2
c

(34)

S(2) =
π

Nc

√

4

3
(∆ − ∆crit)

√

(2J1) (2J2) (35)

β(2) =
2πL

Nc

√

(2J1)(2J2)
√

4
3
(∆ − ∆crit)

(36)

S(3) =
π

Nc

√

(2J1) (2J2) (2J3) (37)

β(3) =
πL

N2
c

√

(2J1) (2J2) (2J3)
4
3
(∆ − ∆crit)

. (38)

Except in the single-charge case, we have assumed that all the Ji are much less than

N2
c ; also, we have in all cases expanded to the leading non-trivial order in ∆−∆crit.

Although we have expressed the entropy of the three possible charge configurations

solely in terms of CFT quantities, the CFT temperature predictions still depend on

L, which appears to be a purely AdS quantity. Viewing the four dimensional gauge

theory as a field theory on the boundary of AdS, the factor of L sets the energy scale

for the S1 of the full S3 × S1 geometry of the gauge theory.

It is very tempting to write a general formula which interpolates between the

various charge configurations near extremality, at least when all Ji ≪ N2
c . By

inspection of equations (33)-(38), the formula which accomplishes this is:

S =
π

Nc

√

∏

i

(

2Ji +
4

3
(∆ − ∆crit)

)

(39)

β =
2πL

Nc

√

∏

i

(

2Ji +
4

3
(∆ − ∆crit)

)

(

1 + J1J2J3

2Nc

√

4
3
(∆ − ∆crit)

)

(1 + J1J2J3)
4
3
(∆ − ∆crit)

. (40)

As we shall see in the next section, so long as it does not vanish, the J1J2J3/Nc

term in the equation for β is of order at least Nc, justifying the use of the above
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interpolation formula.

4 Bounds on the semiclassical regime

We now determine the regime of validity for the semiclassical formulas found above.

The requirement that the near horizon curvature remain small will also fix the relative

sizes of the CFT charges Ji and the large number Nc. One particularly useful measure

of the near horizon curvature is:

G
4/3
5 C ≡

∣

∣

∣
G

4/3
5 RµνR

µν
∣

∣

∣

r=r+

≪ 1. (41)

The leading order behavior of RµνR
µν in the various charge cases is given by:

C1 =
1

L4

16

3

q1/L
2

(µ/L2)2 + ... (42)

C2 =
1

L4

(

16

3

(q1 + q2) /L2

((µ − µcrit) /L2)2
+

88

9

(q1/L
2) (q2/L

2)

((µ − µcrit) /L2)4

)

+ ... (43)

C3 =
44

L4

( q1

L2

q2

L2

q3

L2

)

−2/3

+ ... (44)

Using the dictionary entries established in the previous section, the requirement

that the near horizon curvature remain small yields the following constraints on the

parameters of the semiclassical regime in the single, double and triple charge cases

respectively:

N2/3
c ≫

(

J1

(∆ − ∆crit)
2

)

(45)

N2/3
c ≫

(

(J1 + J2)

(∆ − ∆crit)
2 +

J1J2N
2
c

(∆ − ∆crit)
4

)

(46)

N2
c ≪ J1J2J3. (47)

Where in the above bounds we have dropped unimportant factors of order unity.

Whereas the single and double charges cases are bounded above by an appropriate

power of Nc, in the triple charge case we instead find a lower bound.
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5 Effective strings from giant gravitons

We now present evidence that an effective string created by a distribution of giant

gravitons on the spherical factor of AdS5 × S5 has the same thermodynamics as a

near-extremal R-charged black hole with charges satisfying qi/L
2 ≪ 1. (By near-

extremal we mean having energies only slightly above the threshold to produce a

regular horizon). After analyzing the single charge case in section 5.1, we consider

in sections 5.2 and 5.3 more general giant graviton distributions on the S5 and show

that the thermodynamics of the effective strings produced in these cases also match

well to the two and three charge black holes.

When the extremality parameter µ = 0, the black hole becomes an uncloaked

singularity or “superstar” [12]. Recent work has shown that single charge superstars

in AdS5 are well-described by a distribution of gravitons smeared out along one of

the equators of the S5 [12]. Following [12], we parametrize the S5 of radius L by

angular coordinates θ1, θ2, φ1, φ2 and φ3 where the three distinct equatorial directions

are specified by the three φ angles. Assuming that the giant gravitons orbit the S5

along the φ1 equator, their distribution dn1/dθ1 in the θ1 direction is determined by

integrating over the angular dependence of the five-form flux in the other directions

of the S5. This distribution is computed in [12] with the result:

dn1

dθ1
= Nc

q1

L2
sin 2θ1. (48)

The total number of such giant gravitons is obtained by integrating over all values

of θ1 for which the five-form flux is positive:

n1 =

∫ π/2

0

dn1

dθ1
dθ1 = Nc

q1

L2
. (49)

As determined in [19], the angular momentum of a single giant graviton orbiting in

the φ1 direction and at azimuthal angle θ1 is:

pφ1
= Nc sin2 θ1 (50)

which implies that the total angular momentum of the giant graviton distribution is
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[12]:

Pφ1
=

∫ π/2

0

dn1

dθ1
Nc sin2 θ1dθ1 = N2

c

q1

2L2
. (51)

Using the dictionary entries previously established, we thus find that the number of

giant gravitons is exactly:

n1 =
2J1

Nc

(52)

with net angular momentum:

Pφ1
= J1. (53)

Based on the “stringy exclusion principle” found in [18], it has been shown that a

single giant graviton can have maximal angular momentum Nc before it inflates to

the full size of the S5 [19]. Hence, in addition to the small black hole constraint

J1 ≪ N2
c , we must also have J1 & Nc in order to have a finite number of giant

gravitons.

5.1 One distribution of giant gravitons

In this section we present evidence that the transverse intersection of a single D3-

brane with the superstar distribution of giant gravitons described above creates an

effective string which explains the thermodynamic properties of the single charge

black hole. To remain in the regime well-described by both supergravity and the

giant graviton distribution, the single charge supergravity bound of equation (45),

(

J1

(∆ − J1)
2

)

≪ N2/3
c (54)

implies:

J1 +

√
J1

N
1/3
c

≪ ∆ (55)

where we have used the fact that in the single charge case ∆crit = J1. Since J1 scales

as N1+δ
c for some 0 < δ < 1, J1 dominates the lower bound of the above inequality.

Thus, although ∆ will necessarily be above the BPS bound, it can still scale as J1N
ε
c

for small ε > 0.

The value of the central charge of the effective string created from the intersection
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of 2J1/Nc giant gravitons and a single transverse D3-brane follows from the appendix:

ceff(1) = 12
J1

Nc
. (56)

Matching the Hagedorn temperature of the effective string to the Hawking temper-

ature of the black hole yields:
L2

Nc

= α′

eff (57)

so that the tension of the effective string becomes:

τeff =
1

2πα′

eff

=
Nc

2πL2
. (58)

Treating the effective string as a real curve inside the giant graviton S3, the corre-

sponding volume of a real codimension two S2 is given by:

τD3V ol(S2) = τeff (59)

so that:

V ol(S2) = πL2 (60)

which is exactly a quarter the size of the maximum possible S2 of volume 4πL2.

Hence, the radius of the S2 never exceeds the maximal value of L. This gives

provisional evidence that the intersecting giant graviton picture considered here gives

a proper description of single charge black holes in AdS5: such a black hole slightly

above extremality corresponds to an ensemble of highly excited effective strings at

their Hagedorn temperature.

5.2 Two distributions of giant gravitons

As we observed around (12), the two-charge black hole in AdS5 acquires a regular

horizon finitely far from the supersymmetric limit: the non-extremality parameter µ

must be greater than or equal to µcrit ≡ q1q2/L
2. (Recall that we require qi ≪ L2).

This makes it less clear that string theory should provide a correct accounting of the

microstates of a black hole with µ slightly larger than µcrit. Nevertheless, we will

argue here that an effective string picture once again succeeds in reproducing the

thermodynamics up to an overall factor of order unity which we have been unable
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to determine.

In contrast to the one-charge case where the effective strings are highly excited

and the temperature of the black hole close to extremality is identified with the

Hagedorn temperature of the strings, here the picture is that an effective string

created by the intersection of two distributions of giant gravitons is stretched over a

length Leff and has excitations running along it which can be described in terms of

a conformal field theory. If this conformal field theory has central charge ceff, then

up to factors of order unity the free energy of the excitations we have described is

F = −ceffLeffT
2 , (61)

where T is the temperature. The entropy, which we assume is carried entirely by the

excitations of the conformal field theory on the effective string, satisfies

S

T
= −∂F/∂T

T
= 2ceffLeff , (62)

where we have again neglected factors of order unity. Let us use the supergravity

results (35) and (36) for S and T in the two-charge case to estimate

2ceffLeff = 8π2L
J1

Nc

J2

Nc

. (63)

The effective string arises from the intersection of two distributions of giant gravi-

tons orbiting different equators of the S5, with 2J1/Nc giant gravitons along one

equator and 2J2/Nc along the other. As determined in the appendix, the central

charge of the effective string is

ceff(2) = 12
J1

Nc

J2

Nc
. (64)

Combining (63) and (64), the effective string has length

Leff(2) =
π

6
(2πL) , (65)

which is a well behaved length for a circle on the S5 of radius L. As with the

final result (60) of section 5.1, the main point is that elementary reasoning based on

simple string theory pictures give the correct number of microstates to understand
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the semiclassical black hole entropy.

5.3 The three-charge case in terms of the effective string

The successful description of black hole microstates of the double charge black holes

suggests that the three-charge case should not be much different, at least in a limit

where the third charge is much smaller than the first two. The reason is that (again

in analogy with the asymptotically flat space cases) the third charge can then be

regarded as momentum along the string in one direction.

As with the two-charge case, one must proceed finitely above the supersymmetric

mass limit to achieve a regular horizon. We will be unable to give any account of

this finite mass gap, and we will refer only to entropy and conserved charges. We

note however that for q3 ≪ q1q2/L
2, the mass gap becomes the same for the two and

three-charge cases (compare (13) with the discussion above (12)). This would thus

be a good starting point for understanding why there is some mass gap in the two

charge case.

We propose to describe the microstates behind the zero-temperature horizon that

forms exactly at µ = µcrit(3) in terms of states of the effective string where there are

excitations moving only in one direction. Such states can indeed have finite entropy

and zero-temperature. Their entropy comes from Cardy counting:

SCardy = 2π

√

nceff

6
, (66)

where n is the level of the excitations moving in one direction: thus n = J3. According

to the discussion above and the computation performed in the appendix, we should

use the same ceff as in the two-charge case:

ceff(3) = ceff(2) = 12
J1

Nc

J2

Nc
. (67)

Comparing (66) to the result (37), one sees that the level of the effective string would

need to be:

n = J3 . (68)

This agrees with our previous claim that n should be identified with J3.

Just as the individual graviton could have maximal angular momentum Nc, for
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an effective string picture to be accurate, the highest mode excitation n must be

bounded above by Nc. To describe the case where all three qi are comparable,

one would need to consider the quantum mechanics of three distributions of giant

gravitons. This appears to be a formidable problem.

In summary, the account of microstates based on intersecting giant gravitons

and effective strings agrees quite well with the entropy of the corresponding charged

black holes in AdS5. The main puzzle remaining is the mass gap in the two and three

charge cases between the supersymmetric bound on the mass and the minimum mass

needed to form a regular horizon. Qualitatively, what has to happen in the CFT is

that there are very few operators with ∆ − J1 − J2 − J3 less than this mass gap,

but for larger “twist” there are such a profusion of operators that they correspond

to macroscopic horizons in AdS5.

6 The one-charge black hole and free fermions

In light of recent results [20, 21] on the description of supersymmetric states asymp-

totic to AdS5 ×S5 with one non-zero angular momentum, it is interesting to inquire

how the free fermion picture might elucidate the physics of the single charge case.

For µ = 0 and only q1 6= 0, the solution (1) with k = 1, when lifted to ten dimensions,

can be recast in the form described by Eq. (2.5) of [21].1

The metric in ten dimensions [12] is

ds2 =
√

∆

[

− f

H
dt2 +

dr2

f
+ r2dΩ2

3

]

+
1√
∆

H

[

L2dµ2
1 + µ2

1

(

Ldφ1 +

(

1

H
− 1

)

dt

)2
]

+
1√
∆

3
∑

i=2

L2(dµ2
i + µ2

i dφ2
i ) ,

(69)

where the µi are constrained by
∑3

i=1 µ2
i = 1, the functions f and H are as given in

(3) and (4), and ∆ = H−µ2
1(H−1). The second 3-sphere, S̃3 in the notation of [21],

is in the hyperplane parametrized as (µ2 cos φ2, µ2 sin φ2, µ3 cos φ3, µ3 sin φ3), and its

1The explicit form of the solution that we present here is known to O. Lunin and J. Maldacena
[22].
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radius (from the metric (69)) is L
√

1 − µ2
1/∆1/4. The transformation of variables

needed to bring (69) into the form described by Eq. (2.5) of [21] includes

√

x2
1 + x2

2 = µ1

√

r2 + L2 + q1

y = rL
√

1 − µ2
1 ,

(70)

and the all-important function z of [21] is

z =
1

2

r2 + (q1 − L2)(1 − µ2
1)

r2 + (q1 + L2)(1 − µ2
1)

. (71)

It is possible to use (70) to eliminate µ1 and r and express z solely in terms of y and
√

x2
1 + x2

2. The resulting expression is somewhat lengthy, and we will not record it

here. Its y → 0 limit is quite simple, though:

z
∣

∣

∣

y=0
=











1

2

q1 − L2

q1 + L2
if x2

1 + x2
2 < q1 + L2

1/2 otherwise.

(72)

If q1 = 0, then we recover the free fermion description of AdS5 × S5, which is Nc

fermions filling a disk-shaped droplet of radius L in the x1-x2 plane. The one-

charge superstar is some excitation of this state, and from (72) we see that it is a

uniformly but partially filled disk of radius
√

q1 + L2. The filling fraction must be

ν = L2/(q1 +L2) in order for the number of fermions still to be Nc. Comparing with

(72), we arrive at the result

z
∣

∣

∣

y=0
=

1

2
− ν . (73)

This partially filled state is not unique: it should be regarded as an ensemble where

the quantum states of individual fermions corresponding to points inside the disk

each have probability ν of being occupied. Any representative of this ensemble may

be constructed from the ground state by acting with a color-singlet polynomial in

the complex scalar field Z1 = X1+iX2—the particular polynomial being constructed

from factors corresponding to Young diagrams in a manner that is described quite

precisely in [20, 21]. A rough approximation of this construction is to think of many

powers of det Z and sub-determinants of it multiplied together to give the operator
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used for constructing a representative state of the ensemble. These products are the

CFT translation of the distribution of giant gravitons found in [12].

It is interesting to write the thermodynamics of the near-extremal single-charge

superstar in terms of ν: we recall from (33) that

S =
4π

3
(∆ − J1)

√

2J1/N2
c

1 + 2J1/N2
c

=
4π

3
(∆ − J1)

√

ν(1 − ν) , (74)

in a regime where 1 ≪ ∆ − J1 ≪ J1. This is quite an interesting regime because as

one increases the “twist” ∆ − J1 from 0, the singular BPS solution gradually grows

a regular horizon. Counting the number of states with large J1 and moderate ∆−J1

seems closer to tractable than other entropy problems encountered in the study of

strongly coupled N = 4 super Yang-Mills. Perhaps surprisingly, the expression for

the entropy in (74) involves no explicit factors of Nc, encouraging us to think that a

correct counting of color singlets will provide a complete enumeration of the relevant

microstates.

7 Conclusions and outlook

We have shown that the salient thermodynamic features of R-charged black holes in

AdS5 can be understood in terms of effective strings created from the intersection

of giant gravitons. In the single charge case the free fermion picture of [21] make it

possible to give a very explicit description of the dual CFT operators, and we have

briefly indicated in section 6 how they can be constructed. In this concluding section

we consider the two and three charge cases. Letting Zi denote the three complex

scalars charged under U(1)3 ⊂ SU(4)R, the operators det Zi each correspond to a

maximal giant graviton with angular momentum along a distinct equator of the S5

[23].

Upon identifying the two distributions of giant gravitons with operators built

from Z1 and Z2 fields, the effective string moves along the third equator of the S5

and thus consists of NL left-moving Z3 fields and NR right-moving Z̄3 fields in the

dual CFT. The total dimension of a corresponding gauge theory operator is then:

∆ = NL + NR + J1 + J2 + δimp (75)
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where the presence of the additional small impurity term δimp follows from the fact

that the operators must remain above the BPS bound2. As of the writing of this

paper, we do not yet know of a systematic way to insert the Z3 and Z̄3 fields and

the order δimp of other impurities and will thus simply write the microstates of such

black holes, {ΩBH} as:

{ΩBH} ∼







J1/Nc
∏

i=1

∫

det X(xi)ρ (xi) d4xi

J2/Nc
∏

j=1

∫

det Y (yj)ρ (yj) d4yj





all possible insertions of
NL Z′s, NR Z̄′s

δimp other impurities

(76)

where the presence of the d = 4 distribution ρ simply indicates that we do not

yet understand how localized the operators are on the CFT and the product over

determinants runs from 1 to J1/Nc rather than 2J1/Nc because the determinant

prescription we are using is still too crude to correctly model angular distributions of

giant gravitons on the S5. It would be interesting to explicitly verify that the entropy

generated by all such gauge theory operators correctly matches onto the known black

hole entropy. Finally, we recall that in contrast to the single charge case where a black

hole can form for an arbitrarily small value of µ > 0, in both the double and triple

charge black holes, the extremality parameter must remain above the finite value

µcrit > 0. This behavior suggests the possibility of a phase transition in passing from

the single to higher charge cases. This should correspond to a sufficiently large value

of δimp in the dual CFT, but we do not yet understand the dynamics responsible

for this phase transition. Perhaps it is analogous to a free energy of crystallization,

where the microstates of the black hole are like the high-entropy, high-energy fluid

phase and the BPS state is like the crystalline phase.

As the above analysis demonstrates, even the smallest semiclassical R-charged

black holes must have R-charge at least Nc in order for the intersecting giant graviton

picture to produce a physically reasonable effective string. Although the effective

strings for black holes in flat space and AdS5 are both produced from the intersection

of D3-branes, there are some important differences between the properties of these

strings. Indeed, whereas black holes in flat space are described by effective strings

produced by order J D3-branes, black holes in AdS5 are described by effective strings

produced by only order J/Nc D3-branes. The ubiquitous factors of Nc in both the

2See equation 31.
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supergravity formulas and effective string relations underscore the key role that the

five-form flux plays in the dynamics of extended objects in AdS5 × S5. In any case,

a more detailed description of the dual CFT operators for such configurations would

be most instructive.
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Appendix

In this appendix we compute the central charge of the effective string in the two and

three-charge cases by calculating the intersection number of two giant graviton dis-

tributions sourced by charges q1 and q2. The case of one giant graviton distribution

intersecting a single transverse D3-brane follows as a special case of the following

analysis and will be omitted. Using notation established in section 5, we introduce

the directional cosines:

µ1 = cos θ1, µ2 = sin θ1 cos θ2, µ3 = sin θ1 sin θ2. (77)

The self-dual RR five-form flux is then given by:

F (5) = dB(4) + ∗dB(4) (78)

where [12]:

B(4) = −r4

L
∆dt ∧ d3Ω − L

3
∑

i=1

qiµ
2
i (Ldφi − dt) ∧ d3Ω (79)

with d3Ω the volume element of a unit S3 with angles (α1, α2, α3). Since ∆ only

depends on the radial coordinate r, we will not need its explicit form in the compu-

tation to follow. Following [12], the first distribution of giant gravitons sourced by
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charge q1 generates a flux F (5,1) with component along the S5:

F
(5,1)
θ1φ1α1α2α3

= L2q1 sin 2θ1 sin2 α1 sin α2. (80)

Integrating over all coordinates except θ1 yields the number distribution of gravitons

in the θ1 direction:

dn1 =
Nc

4π3L4
dθ1

∫

F
(5,1)
θ1φ1α1α2α3

dφ1d
3α =

2J1

Nc
sin 2θ1dθ1 (81)

where in the last equality we have used the dictionary entries previously established.

Similarly, the second distribution of giant gravitons sourced by charge q2 generates

two components along the S5:

F
(5,2)
θ1φ2α1α2α3

= −L2q1 sin 2θ1 cos2 θ2 sin2 α1 sin α2 (82)

F
(5,2)
θ2φ2α1α2α3

= L2q1 sin2 θ1 sin 2θ2 sin2 α1 sin α2. (83)

The number distribution of giant gravitons due to the q2 charge is then:

dn2 =
2J2

Nc

(

sin2 θ1 sin 2θ2dθ2 − sin 2θ1 cos2 θ2dθ1

)

. (84)

To determine the intersection number of these two distributions, we consider the

intersection of the infinitesimal distributions at angles θ1 and θ2 so that the spheres

intersect over some S1. Now perform the Hopf fibration along this S1:

ϕ : S5 → S5/S1 ≃ CP
2. (85)

Since an S3 inside of the S5 is given by a degree 2 real algebraic variety and since

the giant graviton distribution at this angle is this same S3 wrapped dn times, the

first distribution of giant gravitons maps to a complex curve C1(θ1) in CP
2 of degree

2dn1 and the second distribution of giant gravitons maps to a complex curve C2 (θ2)

of degree 2dn2. The total intersection number I(θ1, θ2) of the curves C1(θ1) and

C2(θ2) is then given by Bézout’s theorem, which states that I = deg C1 deg C2, or:

I(θ1, θ2) = 4dn1dn2. (86)
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To determine the total intersection number of the two distributions, we recall that

we are simply counting the number of units of flux from the five-form flux generated

by the giant gravitons. For this reason, we must integrate the number distributions

of equations (81) and (84) over their positive domains of definition, θ1, θ2 ∈ [0, π/2].

The total intersection number is thus:

Itot =

∫ π/2

0

∫ π/2

0

I(θ1, θ2)dθ1dθ2 (87)

= 16
J1

Nc

J2

Nc

∫ π/2

0

sin2 θ1 sin 2θ1dθ1

∫ π/2

0

sin 2θ2dθ2 = 8
J1

Nc

J2

Nc
. (88)

This Itot corresponds to the bosonic central charge of the string. Assuming that

the effective string has some supersymmetry, each worldsheet boson has a fermionic

counterpart so that the total central charge for the effective string is:

ceff =
3

2
Itot = 12

J1

Nc

J2

Nc

. (89)
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